3-rx.comCustomer Support
3-rx.com
   
HomeAbout UsFAQContactHelp
News Center
Health Centers
Medical Encyclopedia
Drugs & Medications
Diseases & Conditions
Medical Symptoms
Med. Tests & Exams
Surgery & Procedures
Injuries & Wounds
Diet & Nutrition
Special Topics



\"$alt_text\"');"); } else { echo"\"$alt_text\""; } ?>


Join our Mailing List





Syndicate

You are here : 3-RX.com > Home > Cancer -

New hope for deadly childhood bone cancer

CancerAug 31, 09

Researchers at Huntsman Cancer Institute (HCI) at the University of Utah have shed new light on Ewing’s sarcoma, an often deadly bone cancer that typically afflicts children and young adults. Their research shows that patients with poor outcomes have tumors with high levels of a protein known as GSTM4, which may suppress the effects of chemotherapy. The research is published online today in the journal Oncogene.

“Doctors and researchers have long known that certain Ewing’s sarcoma patients respond to chemotherapy, but others don’t even though they have the same form of cancer,” says HCI Investigator Stephen Lessnick, M.D., Ph.D. “Our research shows that GSTM4 is found in high levels among those patients where chemotherapy doesn’t seem to work. It’s found in low levels in patients where chemotherapy is having a more positive effect.”

The research could lead to drugs that can suppress GSTM4 in certain patients. It also could lead to a screening test that could reveal which therapies will be most effective for patients. “GSTM4 doesn’t seem to suppress the benefits of all chemotherapy drugs, just certain ones. A GSTM4-based test could help to identify the best therapy for each individual patient,” Lessnick says.

Ewing’s sarcoma is the second most common bone cancer in children and adolescents. The five-year survival rate is considered poor at about 30 percent if the cancer has spread by the time it is diagnosed, and there is an even poorer prognosis for patients who have suffered a relapse.

For this study, researchers focused on an abnormal protein known as EWS-FLI, which is found in most Ewing’s sarcoma tumors. What they discovered is that EWS-FLI causes increased amounts of the GSTM4 gene – and the protein it produces – to be expressed in tumors, a previously unknown effect that led them to make the connection between poor outcomes and high levels of GSTM4. The discovery was made by focusing on repetitive DNA sequences called microsatellites. Microsatellites are sometimes referred to as “junk DNA” because they are not thought to have a normal role in the genome. By examining how EWS-FLI interacts with certain microsatellites, Lessnick and his team were able to identify GSTM4.

Lessnick says the next step in research is to focus on testing and treatments that may lead to better survival rates in patients. “Personalized medicine is the next frontier in the battle against cancer,” he says. “We now know all cancers are not the same. By focusing on how these proteins are expressed in individual tumors, we may soon be able to offer the treatment that will work best for each patient, and that could lead to higher cure rates,” he says.

###

Lessnick is director of HCI’s Center for Children’s Cancer Research, and is a Jon and Karen Huntsman Presidential Professor in Cancer Research. This research was supported by funds from the Terri Anna Perine Sarcoma Fund, the Liddy Shriver Sarcoma Initiative, the Sunbeam Foundation, the Huntsman Cancer Foundation, and Alex’s Lemonade Stand Foundation.

Huntsman Cancer Institute (HCI) at the University of Utah marks its 10th anniversary in 2009. HCI was founded by Jon M. Huntsman to fulfill his dream of finding a cure for cancer through genetic research. In the last 10 years, HCI has grown to become one of America’s major cancer research centers. HCI is part of the University of Utah healthcare system and is ranked consistently by U.S. News & World Report as one of the top cancer hospitals in the country. For more information about HCI, please visit http://www.huntsmancancer.org

Contact: Linda Aagard
.(JavaScript must be enabled to view this email address)
801-587-7639
University of Utah Health Sciences



Print Version
Tell-a-Friend
comments powered by Disqus

RELATED ARTICLES:
  New biomarkers may influence drug design and alternative treatments of cancer, study shows
  Metabolic profiles distinguish early stage ovarian cancer with unprecedented accuracy
  Moffitt researchers develop first genetic test to predict tumor sensitivity to radiation therapy
  New drug for neuroblastoma shows promise in phase I study
  Experimental treatment sends deadly leukemia into remission
  Study could reduce unnecessary cancer screening
  UA researchers discover component of cinnamon prevents colorectal cancer in mice
  Profiling approach to enable right lung cancer treatment match
  Fat grafting technique improves results of breast augmentation
  Germline TP53 mutations in patients with early-onset colorectal cancer
  Clinical trial suggests combination therapy is best for low-grade brain tumors
  UW research shows sensor technology may help improve accuracy of clinical breast exams

 












Home | About Us | FAQ | Contact | Advertising Policy | Privacy Policy | Bookmark Site