3-rx.comCustomer Support
3-rx.com
   
HomeAbout UsFAQContactHelp
News Center
Health Centers
Medical Encyclopedia
Drugs & Medications
Diseases & Conditions
Medical Symptoms
Med. Tests & Exams
Surgery & Procedures
Injuries & Wounds
Diet & Nutrition
Special Topics



\"$alt_text\"');"); } else { echo"\"$alt_text\""; } ?>


Join our Mailing List





Syndicate

You are here : 3-RX.com > Home > Cancer -

Engineers Creating Small Wireless Device to Improve Cancer Treatment

CancerApr 18, 06

Engineers at Purdue University are creating a wireless device the size of a rice grain that could be implanted in tumors to tell doctors the precise dose of radiation received and locate the exact position of tumors during treatment.

Researchers at Purdue’s Birck Nanotechnology Center have tested a dime-size prototype to prove the concept and expect to have the miniature version completed by the end of summer, said Babak Ziaie (pronounced Zee-Eye-Eee), an associate professor in the School of Electrical and Computer Engineering.

“Currently, there is no way of knowing the exact dose of radiation received by a tumor,” Ziaie said. “And, because most organs shift inside the body depending on whether a patient is sitting or lying down, for example, the tumor also shifts. This technology will allow doctors to pinpoint the exact position of the tumor to more effectively administer radiation treatments.”

Research findings were detailed in a paper that appeared earlier this year in proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, a conference organized by the Institute of Electrical and Electronics Engineers. The paper was written by doctoral student Chulwoo Son and Ziaie.

The device, a “passive wireless transponder,” has no batteries and will be activated with electrical coils placed next to the body.

“It will be like a capsule placed into the tumor with a needle,” said Ziaie, who has a dual appointment in Purdue’s Weldon School of Biomedical Engineering.

Although imaging systems now used can provide a three-dimensional fix on a tumor’s shifting position during therapy, these methods are not easy to use during radiation therapy, are costly and sometimes require X-rays, which can damage tissue when used repeatedly, he said.

Doctors could use the wireless technology, however, to precisely track a tumor by using three or six coils placed around the body to pinpoint the location of the electronic device, Ziaie said.

Researchers tested the prototype with a radioactive material called cesium.

The device, which contains a miniature version of dosimeters worn by people in occupations involving radioactivity, could provide up-to-date information about the cumulative dose a tumor is receiving over time.

The technology uses the same principle as electret microphones, popular products found in consumer electronics stores. The microphones contain a membrane that vibrates in response to sound waves. Between the membrane and a metal plate is an air gap that serves as a capacitor, or a device that stores electricity. As the membrane vibrates, the size of the air gap changes slightly, increasing and decreasing the capacitance and altering the flow of electric current through the circuit, creating a signal that transmits information stored in the dosimeter.

“It’s basically like a very small tuning circuit in your radio,” Ziaie said. “This will be a radiation dosimeter plus a tracking device in the same capsule. It will be hermetically sealed so that it will not have to be removed from the body.”

The device is an example of a microelectromechanical system, or a tiny mechanical device fabricated using methods generally associated with microelectronics.

The Purdue engineers have begun working with researchers at the Indiana University School of Medicine to further develop the technology.

The research has been funded by the National Science Foundation.

The Birck Nanotechnology Center is part of Purdue’s Discovery Park, the university’s hub for interdisciplinary research.



Print Version
Tell-a-Friend
comments powered by Disqus

RELATED ARTICLES:
  New biomarkers may influence drug design and alternative treatments of cancer, study shows
  Metabolic profiles distinguish early stage ovarian cancer with unprecedented accuracy
  Moffitt researchers develop first genetic test to predict tumor sensitivity to radiation therapy
  New drug for neuroblastoma shows promise in phase I study
  Experimental treatment sends deadly leukemia into remission
  Study could reduce unnecessary cancer screening
  UA researchers discover component of cinnamon prevents colorectal cancer in mice
  Profiling approach to enable right lung cancer treatment match
  Fat grafting technique improves results of breast augmentation
  Germline TP53 mutations in patients with early-onset colorectal cancer
  Clinical trial suggests combination therapy is best for low-grade brain tumors
  UW research shows sensor technology may help improve accuracy of clinical breast exams

 












Home | About Us | FAQ | Contact | Advertising Policy | Privacy Policy | Bookmark Site