3-rx.comCustomer Support
3-rx.com
   
HomeAbout UsFAQContactHelp
News Center
Health Centers
Medical Encyclopedia
Drugs & Medications
Diseases & Conditions
Medical Symptoms
Med. Tests & Exams
Surgery & Procedures
Injuries & Wounds
Diet & Nutrition
Special Topics



\"$alt_text\"');"); } else { echo"\"$alt_text\""; } ?>


Join our Mailing List





Syndicate

You are here : 3-RX.com > Home > Stroke -

Hope for stroke victims

StrokeFeb 08, 11

Much of the devastation of stroke and head trauma is due to damage caused the overproduction of a substance in the brain called glutamate. Preventing this damage has been impossible, until now, as many drugs don’t cross the so-called blood-brain barrier, and those that do often don’t work as intended. But a method originally devised at the Weizmann Institute of Science may, in the future, offer a way to avert such glutamate-induced harm.

Prof. Vivian I. Teichberg of the Institute’s Neurobiology Department first demonstrated a possible way around these problems in 2003. Glutamate – a short-lived neurotransmitter – is normally all but absent in brain fluids. After a stroke or injury, however, the glutamate levels in brain fluid become a flood that over-excites the cells in its path and kills them. Instead of attempting to get drugs into the brain, Teichberg had the idea that one might be able to transport glutamate from the brain to the blood using the tiny “pumps,” or transporters, on the capillaries that work on differences in glutamate concentration between the two sides. Decreasing glutamate levels in blood would create a stronger impetus to pump the substance out of the brain. He thought that a naturally-occurring enzyme called glutamate-oxaloacetate transaminase (GOT, for short) could “scavenge” blood glutamate, significantly lowering its levels. By 2007, Teichberg and his colleagues had provided clear evidence of the very strong brain neuroprotection that oxolacetate (a chemical similar to GOT) afforded rats exposed to a head trauma.

Two new studies – conducted by Fransisco Campos and others from the lab of Prof. Jose Castillo in theUniversity of Santiago de Compostela, Spain – now provide a definitive demonstration of Teichberg’s results.

In the first, the scientists conclusively showed that oxoloacetate injected into rats with stroke-like brain injuries reduces glutamate levels both in the blood and in the affected brain region, while significantly lessening both cell death and the swelling that can accompany stroke. In the second, a team of neurologists in two different hospitals checked the levels of glutamate and GOT in several hundred stroke victims who were admitted to their hospitals. They found that the most significant predictor of the prognosis – how well they would recover at three months and how much brain damage they would suffer – was the levels of these two substances. High glutamate levels correlated with a poor outcome, high GOT levels with a better one.

The overall implication of these two papers is that administering GOT might improve a patient’s chances of recovering, as well as speeding up the process. In addition to stroke and head trauma, a number of diseases are characterized by an accumulation of glutamate in the brain, including Alzheimer’s disease, Parkinson, multiple sclerosis, epilepsy, glaucoma, certain brain tumors and amyotrophic lateral sclerosis, and there is hope that, in the future, treatments to scavenge glutamate could relieve the symptoms and improve the outcomes for a number of neurological problems. Yeda, the technology transfer arm of the Weizmann Institute, holds a patent for this method.

###

Prof. Vivian I. Teichberg’s research is supported by the Nella and Leon Benoziyo Center for Neurosciences; the Carl and Micaela Einhorn-Dominic Brain Research Institute; and the Legacy Heritage Fund Program of the Israel Science Foundation. Prof. Teichberg is the incumbent of the Louis and Florence Katz-Cohen Professorial Chair of Neuropharmacology.

###


Contact: Yivsam Azgad
.(JavaScript must be enabled to view this email address)
972-893-43856
Weizmann Institute of Science



Print Version
Tell-a-Friend
comments powered by Disqus

RELATED ARTICLES:
  Aspirin cuts risk of clots, DVT by a third - new study
  ADHD drugs not linked to increased stroke risk among children
  Surgical procedure appears to improve outcomes after bleeding stroke
  Disappearing bacterium may protect against stroke
  Kirk leaves rehab center
  Singing after stroke? Why rhythm and formulaic phrases may be more important than melody
  Stroke centers no worse at weekend treatment
  Regional differences in the care of acute stroke patients
  Scripps Research scientists find way to block stress-related cell death
  Treating mild strokes with clot-busting drug could save $200 million annually, study shows
  Most Medicare stroke patients rehospitalized or dead within year
  UK starts world’s first stroke stem cell trial

 












Home | About Us | FAQ | Contact | Advertising Policy | Privacy Policy | Bookmark Site