3-rx.comCustomer Support
3-rx.com
   
HomeAbout UsFAQContactHelp
News Center
Health Centers
Medical Encyclopedia
Drugs & Medications
Diseases & Conditions
Medical Symptoms
Med. Tests & Exams
Surgery & Procedures
Injuries & Wounds
Diet & Nutrition
Special Topics



\"$alt_text\"');"); } else { echo"\"$alt_text\""; } ?>


Join our Mailing List





Syndicate

You are here : 3-RX.com > Home > Cancer -

Study suggests new ways to improve anti-cancer chemotherapies

CancerApr 12, 10

A study released this week suggests that anti-cancer chemotherapies which use nanoparticles to deliver drugs deep inside tumor tissue will be more effective if the particles are positively electrically charged because they are taken up to a greater extent by proliferating cells, according to a team of chemists and chemical engineers at the University of Massachusetts Amherst.

This is because a positive surface charge allows better uptake of the nanoparticles across the cell membrane, a mechanism which the researchers found controls delivery to most tumor cells. At the same time, “negative particles, which diffuse more quickly, may perform better when delivering drugs deep into tissues,” say UMass Amherst’s Neil Forbes, with chemist Vincent Rotello and colleagues. Their description of a new “tunable” delivery system appears in the current issue of Nature Nanotechnology.

For this work, chemical engineer Forbes and colleagues invented a special three-dimensional cylindroidal “laboratory tumor” device about the size of the period at the end of this sentence. These allow researchers to study and compare relative uptake and diffusion rates of drug delivery particles at a medium complexity level, higher than single cells but less complex than a whole animal. As Forbes explains, “This middle ground turns out to be the size at which diffusion plays a role in chemotherapy drug delivery to tissues. Studying the cell level is too small; we already know that drugs can kill tumor cells there.”


—-
news-medical.net



Print Version
Tell-a-Friend
comments powered by Disqus

RELATED ARTICLES:
  New biomarkers may influence drug design and alternative treatments of cancer, study shows
  Metabolic profiles distinguish early stage ovarian cancer with unprecedented accuracy
  Moffitt researchers develop first genetic test to predict tumor sensitivity to radiation therapy
  New drug for neuroblastoma shows promise in phase I study
  Experimental treatment sends deadly leukemia into remission
  Study could reduce unnecessary cancer screening
  UA researchers discover component of cinnamon prevents colorectal cancer in mice
  Profiling approach to enable right lung cancer treatment match
  Fat grafting technique improves results of breast augmentation
  Germline TP53 mutations in patients with early-onset colorectal cancer
  Clinical trial suggests combination therapy is best for low-grade brain tumors
  UW research shows sensor technology may help improve accuracy of clinical breast exams

 












Home | About Us | FAQ | Contact | Advertising Policy | Privacy Policy | Bookmark Site