3-rx.comCustomer Support
3-rx.com
   
HomeAbout UsFAQContactHelp
News Center
Health Centers
Medical Encyclopedia
Drugs & Medications
Diseases & Conditions
Medical Symptoms
Med. Tests & Exams
Surgery & Procedures
Injuries & Wounds
Diet & Nutrition
Special Topics



\"$alt_text\"');"); } else { echo"\"$alt_text\""; } ?>


Join our Mailing List





Syndicate

You are here : 3-RX.com > Home > Neurology -

New Protein May Reverse Neurodegenerative Diseases

NeurologyFeb 24, 09

An investigational protein that transformed normal laboratory mice into super-jocks holds great promise in developing new treatments for neurodegenerative diseases like Parkinson’s, Alzheimer’s and ALS (Lou Gehrig’s Disease), say researchers at the University of Virginia Health System.

A study published in the February 17, 2009 online edition of Mitochondrion reports that the protein, rhTFAM (an abbreviation for recombinant-human mitochondrial transcription factor A), succeeded in entering and energizing the DNA of the mice’s mitochondria, enabling them to run two times longer on their rotating rods than a control group cohort.

Because many neurodegenerative diseases cause mitochondria to malfunction, medical researchers have been focusing on developing methods for repairing and restoring them. The new UVA study represents an important step toward achieving that goal. It shows that a naturally occurring protein, TFAM, can be engineered to rapidly pass through cell membranes and target mitochondria. Study findings show that rhTFAM acts on cultured cells carrying a mitochondrial DNA disease as well as lab mice.

Conducted in conjunction with Gencia Corporation, a Charlottesville-based biotechnology firm that owns rhTFAM, the study also describes a scalable method of producing the protein in needed quantities.

Mitochondria are the cellular engines that transform food into fuel in our bodies and perform their work in the energy-intensive tissue of our brains, retinas, hearts and skeletal muscles. When damaged, mitochondria slow down, stop generating energy effectively and begin to over-produce oxygen free radicals. If produced in excess, oxygen free radicals chemically attack all cell components, including proteins, DNA and lipids in cell membranes.

“In simple terms, an overabundance of these free radicals cause cells to start rusting,” notes lead study author James P. Bennett, Jr., M.D., PhD, a professor of neurology and psychiatric research at the UVA School of Medicine and director of its Center for the Study of Neurodegenerative Diseases.

While the UVA findings are preliminary, Bennett considers them encouraging. “We’ve shown that the human mitochondrial genome can be manipulated from outside the cell to change expression and increase mitochondrial energy production,” he notes. “This is arguably the most essential physiological role of the mitochondria.”

Although important questions remain about the technology, mechanisms and therapeutic potential of rhTFAM, Bennett believes his team’s findings could contribute to the development of treatments that repair and restore damaged mitochondria in cells. “We’re looking toward the day when we can reverse or delay the progression of various neurodegenerative diseases and other conditions where cell energy production is deficient, including cancer, diabetes and aging,” he says.

Gencia made rhTFAM available to UVA under a material transfer agreement. One study author, Francisco R. Portell, has an affiliation with the company.

Study authors also include Shilpa Iyer, Ravindar R. Thomas, Lisa D. Dunham and Caitlin K. Quigley. All work at the Center for the Study of Neurodegenerative Diseases and the Morris K. Udall Parkinson’s Disease Research Center of Excellence at UVA.

Related link: Recombinant Mitochondrial Transcription Factor A with N-terminal Mitochondrial Transduction Domain Increases Respiration and Mitochondrial Gene Expression - http://www.sciencedirect.com/science/article/B6W8G-4VJ09B8-1/2/c6ae1ad2860553ca6286e9fe71d9e144


Source: University of Virginia Health System



Print Version
Tell-a-Friend
comments powered by Disqus

RELATED ARTICLES:
  Large doses of antioxidants may be harmful to neuronal stem cells
  Repairing the cerebral cortex: It can be done
  UTSW researchers identify a therapeutic strategy that may treat a childhood neurological disorder
  To advance care for patients with brain metastases: Reject five myths
  Study Explains How High Blood Pressure in Middle Age Affects Memory in Old Age
  Study reveals workings of working memory
  Family problems experienced in childhood and adolescence affect brain development
  Researchers find retrieval practice improves memory in severe traumatic brain injury
  Study finds axon regeneration after Schwann cell graft to injured spinal cord
  Recurring memory traces boost long-lasting memories
  TB Vaccine May Work Against Multiple Sclerosis
  Discovery of gatekeeper nerve cells explains the effect of nicotine on learning and memory

 












Home | About Us | FAQ | Contact | Advertising Policy | Privacy Policy | Bookmark Site