3-rx.comCustomer Support
3-rx.com
   
HomeAbout UsFAQContactHelp
News Center
Health Centers
Medical Encyclopedia
Drugs & Medications
Diseases & Conditions
Medical Symptoms
Med. Tests & Exams
Surgery & Procedures
Injuries & Wounds
Diet & Nutrition
Special Topics



\"$alt_text\"');"); } else { echo"\"$alt_text\""; } ?>


Join our Mailing List





Syndicate

You are here : 3-RX.com > Home > Cancer -

Using game theory to understand the physics of cancer propagation

CancerMar 28, 12

In search of a different perspective on the physics of cancer, Princeton University and University of California, San Francisco researchers teamed up to use game theory to look for simplicity within the complexity of the dynamics of cooperator and cheater cells under metabolic stress conditions and high spatial heterogeneity. In the context of cancer, cooperator cells obey the general rules of communal survival, while cheater cells do not.

The ultimate goal of this research was to gain an understanding of the dynamics of cancer tumor evolution under stress. Since cancer can be likened to a community of bacteria, the researchers zeroed in on a simple bacterial model to examine the progression of resistance to drugs under high competition and stress conditions.

Among their key findings: they discovered emergent cooperative outcomes between the two cell types after modifying their game theory framework to account for heterogeneous stress patterns.

###

Article: “Physics of cancer propagation: A game theory perspective” is published in AIP Advances.

Authors: R Chris Cleveland (1), David Liao (2), and Robert Austin (1).

(1) Department of Physics, Princeton University, N.J.
(2) Department of Pathology, University of California, San Francisco

###

Charles E. Blue
.(JavaScript must be enabled to view this email address)
301-209-3091
American Institute of Physics



Print Version
Tell-a-Friend
comments powered by Disqus

RELATED ARTICLES:
  New biomarkers may influence drug design and alternative treatments of cancer, study shows
  Metabolic profiles distinguish early stage ovarian cancer with unprecedented accuracy
  Moffitt researchers develop first genetic test to predict tumor sensitivity to radiation therapy
  New drug for neuroblastoma shows promise in phase I study
  Experimental treatment sends deadly leukemia into remission
  Study could reduce unnecessary cancer screening
  UA researchers discover component of cinnamon prevents colorectal cancer in mice
  Profiling approach to enable right lung cancer treatment match
  Fat grafting technique improves results of breast augmentation
  Germline TP53 mutations in patients with early-onset colorectal cancer
  Clinical trial suggests combination therapy is best for low-grade brain tumors
  UW research shows sensor technology may help improve accuracy of clinical breast exams

 












Home | About Us | FAQ | Contact | Advertising Policy | Privacy Policy | Bookmark Site