3-rx.comCustomer Support
3-rx.com
   
HomeAbout UsFAQContactHelp
News Center
Health Centers
Medical Encyclopedia
Drugs & Medications
Diseases & Conditions
Medical Symptoms
Med. Tests & Exams
Surgery & Procedures
Injuries & Wounds
Diet & Nutrition
Special Topics



\"$alt_text\"');"); } else { echo"\"$alt_text\""; } ?>


Join our Mailing List





Syndicate

You are here : 3-RX.com > Home > Infections - Sexual Health -

Researchers visualize herpes virus’ tactical maneuver

Infections • • Sexual HealthJan 07, 11

For the first time, researchers have developed a 3D picture of a herpes virus protein interacting with a key part of the human cellular machinery, enhancing our understanding of how it hijacks human cells to spread infection and opening up new possibilities for stepping in to prevent or treat infection. This discovery uncovers one of the many tactical manoeuvres employed by the virus.

The Biotechnology and Biological Sciences Research Council (BBSRC)-funded team, led by The University of Manchester, have used NMR - a technique related to the one used in MRI body scanners and capable of visualising molecules at the smallest scales – to produce images of a herpes virus protein interacting with a mouse cellular protein. These images were then used to develop a 3D model of this herpes virus protein interacting with human protein. The research is published this evening (06 January) in PLoS Pathogens.

Lead researcher Dr Alexander Golovanov from Manchester’s Interdisciplinary Biocentre and Faculty of Life Sciences said “There are quite a few types of herpes viruses that cause problems as mild as cold sores through to some quite serious illnesses, such as shingles or even cancer. Viruses cannot survive or replicate on their own – they need the resources and apparatus within a human cell to do so. To prevent or treat diseases caused by viruses we need to know as much as possible about how they do this so that we can spot weak points or take out key tactical manoeuvres.”

The 3D model shows how the viral protein piggybacks onto the molecular machinery components inside human cells, promoting virus replication and spread of infection through the body.

“When you look at the image, it’s like a backpack on an elephant: the small compact fragment of viral protein fits nicely on the back of the human protein,” said Dr Golovanov.

By studying the images along with biochemical experiments using the human version of the cellular protein, the team has uncovered the mechanism by which the viral and cellular proteins work together to guide the viral genetic material out of the cell’s nucleus. Once there, the genetic material can be utilized to make proteins that are used as building blocks for new viruses. The researchers have also confirmed that this relationship between the two proteins exists for related herpes viruses that infect monkeys.

Dr Golovanov continued “Our discovery gives us a whole step more detail on how herpes viruses use the human cell to survive and replicate. This opens up the possibilities for asking new questions about how to prevent or treat the diseases they cause.”

Professor Janet Allen, BBSRC Director of Research said “This new research gives us an important piece of the jigsaw for how a particular viral infection works on a molecular level, which is great news. Understanding the relationship between a human, animal or plant – the host – and the organisms that cause disease – pathogens – is a fundamental step toward successful strategies to minimise the impact of infection. To study host-pathogen relationships we have to look in detail at the smallest scale of molecules – as this study does – and also right through to the largest scale of how diseases work in whole systems – a crop disease in the context of a whole area of agricultural land, for example. BBSRC’s broad portfolio of research into host-pathogen relationships facilitates this well.”

###

Contact: Nancy Mendoza
.(JavaScript must be enabled to view this email address)
44-179-341-3355
Biotechnology and Biological Sciences Research Council



Print Version
Tell-a-Friend
comments powered by Disqus

RELATED ARTICLES:
  Many European countries ill-prepared to prevent and control the spread of viral hepatitis
  Addressing the needs of young women with disorders of sex development
  HPV vaccination not associated with increase in sexually transmitted infections
  Hepatitis C more prevalent than HIV/AIDS or Ebola yet lacks equal attention
  To curb hepatitis C, test and treat inmates
  Vinegar kills tuberculosis and other mycobacteria
  Low national funding for LGBT health research contributes to inequities, analysis finds
  New strategy emerges for fighting drug-resistant malaria
  Toys, books, cribs harbor bacteria for long periods, study finds
  California high school to test students for tuberculosis
  TB Vaccine May Work Against Multiple Sclerosis
  Tuberculosis: Nature has a double-duty antibiotic up her sleeve

 












Home | About Us | FAQ | Contact | Advertising Policy | Privacy Policy | Bookmark Site