3-rx.comCustomer Support
3-rx.com
   
HomeAbout UsFAQContactHelp
News Center
Health Centers
Medical Encyclopedia
Drugs & Medications
Diseases & Conditions
Medical Symptoms
Med. Tests & Exams
Surgery & Procedures
Injuries & Wounds
Diet & Nutrition
Special Topics



\"$alt_text\"');"); } else { echo"\"$alt_text\""; } ?>


Join our Mailing List





Syndicate

You are here : 3-RX.com > Home > Cancer -

‘Disgusted’ Rats Teaching Scientists About Nausea, Work May Lead to New Cancer Treatments

CancerOct 07, 12

Nausea is a common and distressing side effect of many drugs and treatments. Unlike vomiting, nausea is not well understood, but new research by University of Guelph scientists may soon change that.

Guelph PhD student Katharine Tuerke, neuroscience researcher Cheryl Limebeer and Prof. Linda Parker in the Department of Psychology believe they’ve found the mechanism in the brain that is responsible for the sensation of nausea – with the help of some “disgusted” rats.

Their study was published this week in Journal of Neuroscience.

“Although everyone has experienced nausea at some point, its neurobiology is poorly understood due to a lack of animal models,” said Parker, who holds the Canada Research Chair in Behavioural Neuroscience.

“We know about vomiting. The vomiting reflex is very well characterized, but the experience of nausea is something that little is known about. How is it generated? Where is it generated?”

Although rats can’t vomit, they do display a disgust reaction called gaping when re-exposed to a taste that made them feel nauseous in the past. Therefore, these gaping reactions in rats provide a model to understand brain mechanisms that produce nausea in humans.

Using this gaping model, the Guelph researchers, along with University of Toronto professor Paul Fletcher, discovered that serotonin release in the visceral insular cortex may be responsible for the sensation of nausea.

The insular cortex is a site of taste and illness input in the brain. Based on its cell structure and inputs, the insular cortex can be divided into two regions: the gustatory insular cortex and the visceral insular cortex. The gustatory insular cortex receives taste input and the visceral insular cortex receives input from regions of the gut that may produce the sensation of nausea.

Previous research has shown that the neurotransmitter serotonin is critical for the production of nausea. Indeed, classic anti-emetic drugs such as ondansetron that are used in chemotherapy treatment are drugs that block the action of a type of serotonin receptor, serotonin-3 receptors.

The researchers first demonstrated that depletion of serotonin in the entire insular cortex prevented the nausea-induced gaping reactions in rats, suggesting that serotonin activation in this region is necessary for the production of nausea.

Next they examined the effects of delivering drugs that either activate serotonin-3 receptors or block serotonin-3 receptors to specific regions of the insular cortex. In the visceral insular cortex, but not the gustatory insular cortex, activating serotonin caused nausea (produced gaping reactions) and blocking serotonin reduced nausea (eliminated gaping reactions).

These data suggest that the activation of the visceral insular cortex by serotonin may be responsible for the production of the elusive sensation of nausea, which is so difficult to treat.

Tuerke and Parker hope their work will lead to a better understanding of basic neural processes affected by prescribed drugs, with specific applications to controlling nausea and vomiting caused by cancer chemotherapy.

The research was supported by the Natural Sciences and Engineering Research Council of Canada.

###
Contacts:
Prof. Linda Parker
Department of Psychology
.(JavaScript must be enabled to view this email address)
519 824-4120, Ext. 56330 or 56901

Katharine Tuerke
.(JavaScript must be enabled to view this email address)
519824-4120, Ext. 58932



Print Version
Tell-a-Friend
comments powered by Disqus

RELATED ARTICLES:
  New biomarkers may influence drug design and alternative treatments of cancer, study shows
  Metabolic profiles distinguish early stage ovarian cancer with unprecedented accuracy
  Moffitt researchers develop first genetic test to predict tumor sensitivity to radiation therapy
  New drug for neuroblastoma shows promise in phase I study
  Experimental treatment sends deadly leukemia into remission
  Study could reduce unnecessary cancer screening
  UA researchers discover component of cinnamon prevents colorectal cancer in mice
  Profiling approach to enable right lung cancer treatment match
  Fat grafting technique improves results of breast augmentation
  Germline TP53 mutations in patients with early-onset colorectal cancer
  Clinical trial suggests combination therapy is best for low-grade brain tumors
  UW research shows sensor technology may help improve accuracy of clinical breast exams

 












Home | About Us | FAQ | Contact | Advertising Policy | Privacy Policy | Bookmark Site